Molecular simulation of the shear viscosity and the self-diffusion coefficient of mercury along the vapor-liquid coexistence curve.

نویسندگان

  • Gabriele Raabe
  • B D Todd
  • Richard J Sadus
چکیده

In earlier work [G. Raabe and R. J. Sadus, J. Chem. Phys. 119, 6691 (2003)] we reported that the combination of an accurate two-body ab initio potential with an empirically determined multibody contribution enables the prediction of the phase coexistence properties, the heats of vaporization, and the pair distribution functions of mercury with reasonable accuracy. In this work we present molecular dynamics simulation results for the shear viscosity and self-diffusion coefficient of mercury along the vapor-liquid coexistence curve using our empirical effective potential. The comparison with experiment and calculations based on a modified Enskog theory shows that our multibody contribution yields reliable predictions of the self-diffusion coefficient at all densities. Good results are also obtained for the shear viscosity of mercury at low to moderate densities. Increasing deviations between the simulation and experimental viscosity data at high densities suggest that not only a temperature-dependent but also a density-dependent multibody contribution is necessary to account for the effect of intermolecular interactions in liquid metals. An analysis of our simulation data near the critical point yields a critical exponent of beta = 0.39, which is identical to the value obtained from the analysis of the experimental saturation densities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Modeling of Hydrogen Bonding Fluids: Transport Properties and Vapor-Liquid Coexistence

Predictions of the transport properties self-diffusion coefficient and shear viscosity are presented for a recently developed molecular ammonia model. These data show mean unsigned deviations to the experiment over a temperature range from 200 to 500 K of 8 % for the self-diffusion coefficient and 12% for the shear viscosity. Furthermore, the vapor-liquid equilibria of the ternary system carbon...

متن کامل

Prediction of transport properties by molecular simulation: methanol and ethanol and their mixture.

Transport properties of liquid methanol and ethanol are predicted by molecular dynamics simulation. The molecular models for the alcohols are rigid, nonpolarizable, and of united-atom type. They were developed in preceding work using experimental vapor-liquid equilibrium data only. Self- and Maxwell-Stefan diffusion coefficients as well as the shear viscosity of methanol, ethanol, and their bin...

متن کامل

Evaluation of Heterogeneous Densification, Anisotropic Shrinkage and Rheological Behavior of Ceramic Materials during Liquid Phase Sintering by Numerical-Experimental Procedure

The effective shear and bulk viscosity, as well as dynamic viscosity, describe the rheological properties of the ceramic body during the liquid phase sintering process. The rheological parameters depend on the physical and thermo-mechanical characteristics of the material such as relative density, temperature, grain size, diffusion coefficient, and activation energy. Thermal behavior of the cer...

متن کامل

Investigation of isomorph-invariance in liquid methane by molecular dynamics simulation

In this paper, isomorph invariance of liquid methane is investigated by means of constant-NVT molecular dynamics simulations. According to the data extracted from simulations, equilibrium fluctuations show strong correlation between potential energy U and virial W. We also generated isomorph state points and investigated invariance of certain thermodynamic, structural, and dynamical properties....

متن کامل

Transport Properties of Anisotropic Polar Fluids: 1. Quadrupolar Interaction

Equilibrium molecular dynamics simulation and the Green-Kubo formalismwere used to calculate self-diffusion coefficient, shear viscosity, and thermalconductivity for 30 different quadrupolar two-center Lennard-Jones fluids alongthe bubble line and in the homogeneous liquid. It was systematically investi-gated how anisotropy, i.e. elongation, and quadrupole momentum influence the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 123 3  شماره 

صفحات  -

تاریخ انتشار 2005